Proportional Two-Stage Directional Valves
Servo Performance with Double Spool Feedback
Pressures to 350 bar (5000 psi)
Contents

Introduction
 General Description 3
 Features and Benefits 3
 Typical Section 3

Model Code 4

Spool Data 5

Functional Symbol 5

Operating Data 6

Pressures and Minimum Flow Rates 7

Performance Curves
 Power Capacity Envelope 8
 Pressure Gain 8
 Frequency Response 8
 Flow Gain 9

Dimension KBHDG5V-5/7/8 11

Mounting Surface Interface KBHDG5V-5/7/8 13

Electrical Information
 Block Diagram 15
 Typical Connection Arrangements 16

Application Data
 Fluid Cleanliness 17
 Hydraulic Fluids 17
 Installation 17
 Mounting Bolt Kits 17
 Seal Kits 17
 Plugs 17
 Extension Cable 17
 Service Information 17
Introduction

General Description

Vickers proportional valves shown in this catalog are suitable for working pressures up to 350 bar (5000 psi) and flow rates to 375 l/min (99 USgpm).

They are designed to provide a controlled oil flow in proportion to a command signal, with spool position feedback to provide accurate control. Zero lapped spools are available for closed loop control applications and hydrostats are available for load compensation.

KBHDG5V-5/7/8

A range of proportional directional valves with control amplifiers built directly on, and prewired to the valves. Factory-set adjustments of gain, spool deadband compensation, and offset ensure high valve-to-valve reproducibility.

The only electrical inputs required are power supply (24V) and a voltage command signal of ±10V. The amplifier is housed in a robust metal enclosure, sealed against ingress of water and other fluids. Electrical connections are via a standard 7-pin plug.

A spool position monitor point allows the function of the valve to be electrically monitored. Ramp functions, if required, can be generated externally.

Features and Benefits

• Factory-sealed adjustments increase valve-to-valve reproducibility.
• Valve with integrated amplifier selected, ordered, delivered and installed as one performance-tested package.
• Electronic feedback LVDT ensures accurate spool position control.
• Vibration and shock tested.
• Standard 24V DC supply with wide tolerance band.
• Wide range of spool and flow rate options.
• Standard ±10 V DC command signals.
• Installation wiring reduced and simplified.
• Standard 7-pin connector.
• Simple valve removal and replacement for service.
• Supported by auxiliary function modules.
• Full CE electromagnetic compatibility.
• IP67 environmental protection rating.
• Optional valve enable function.
• Optional pilot pressure reducer.

Typical Section View

KBHDG5V-7, 10 design
Model Code

```
K B H D G 5 V - * - ********** - (E)X - T - *** - H 4 - **
```

1. **Valve type**
 - K - Proportional valve

2. **Integral amplifier**
 - B - Integral amplifier “B” series

3. **Feedback arrangement**
 - H - From pilot and main stages

4. **Control type**
 - D - Directional valve

5. **Mounting**
 - G - Subplate mounted

6. **Operation**
 - 5 - Solenoid controlled, pilot operated

7. **Pressure rating**
 - V - 310 bar (4500 psi) Size 05
 - 350 bar (5000 psi) Size 07
 - 350 bar (5000 psi) Size 08

8. **Interface**
 - ISO 4401
 - 5 - Size 05
 - 7 - Size 07
 - 8 - Size 08

9. **Spool type, flow rating and metering**
 - See “Functional Symbol” on page 5.
 - \(p = 5 \) bar (72 psi) per metering flow path, e.g. B to T.

10. **Symmetric spools**
 - For KBHDG5V-5 valves:
 - 2C100N - 100 L/min (26 US gpm)
 - 33C80N - 80 L/min (21 US gpm)
 - 5C85N - 85 L/min (22 US gpm)
 - For KBHDG5V-7 valves:
 - 2C200N - 200 L/min (52 US gpm)
 - 33C160N - 160 L/min (42 US gpm)
 - 5C200N - 200 L/min (52 US gpm)
 - For KBHDG5V-8 valves:
 - 2C375N - 375 L/min (99 US gpm)
 - 33C375N - 375 L/min (99 US gpm)
 - 5C375N - 375 L/min (99 US gpm)

11. **Asymmetric spools**
 - First figure (***) is flow rating P-A, or A-T (“A” port flow); last figure (****) is flow rating P-B, or B-T (“B” port flow)
 - For KBHDG5V-5 valves:
 - 33C60N40 - 60 L/min (17.2 US gpm), “A” port flow 40 L/min (10.6 US gpm), “B” port flow
 - For KBHDG5V-7 valves:
 - For KBHDG5V-8 valves:
 - Asymmetric spools
 - For KBHDG5V-7 valves:
 - 33C60N40 - 60 L/min (17.2 US gpm), “A” port flow 40 L/min (10.6 US gpm), “B” port flow
 - For KBHDG5V-8 valves:

12. **Pilot supply**
 - Blank - Internal-no reducer
 - E - External (no reducer)
 - X - Internal (through integral reducer)
 - EX - External (through integral reducer)
 - See section on maximum pressures (page 7) for when pilot reducer must be used.

13. **Pilot drain**
 - T - Internal
 - Omit for external drain

14. **Electrical connection**
 - PC7 - 7 pin connector without plug
 - PE7 - 7 pin connector with plug
 - PH7 - As PE7 but with pin “C” used for enable signal
 - PR7 - As PC7 but with pin “C” used for enable signal

15. **Coil rating**
 - H - 24 VDC amplifier supply

16. **Port T pressure limit rating**
 - 4 - 50 bar (700 psi) (for internal pilot drain option only, item 11 above)

17. **Design number**
 - 10 - 10 series

WARNING

Valves with integral amplifiers are supplied with or without the metal 7-pin plug. The Vickers plug, part no. 934939, must be correctly fitted to ensure that the EMC rating and IP67 rating are achieved. The plug retaining nut must be tightened with a torque of 2-2.5 Nm (1.5-2.0 lbf ft) to effect a proper seal.
Spool Data

Spool Symbols

Available Spools for KBHDG5V

<table>
<thead>
<tr>
<th>Spool Type</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C</td>
<td>![2C Symbol]</td>
</tr>
<tr>
<td>33C</td>
<td>![33C Symbol]</td>
</tr>
<tr>
<td>5C (zero lapped)</td>
<td>![5C Symbol]</td>
</tr>
<tr>
<td>72C</td>
<td>![72C Symbol]</td>
</tr>
<tr>
<td>733C</td>
<td>![733C Symbol]</td>
</tr>
<tr>
<td>12C</td>
<td>![12C Symbol]</td>
</tr>
<tr>
<td>133C</td>
<td>![133C Symbol]</td>
</tr>
</tbody>
</table>

Spool Type and Flow Ratings

Symmetric Spools

Base line pressure drop \(\Delta p = 5 \text{ bar (72 psi)} \) per metering flow path, e.g. B to T. For actual maximum flow refer to power capacity envelope curves.

<table>
<thead>
<tr>
<th>Spool code</th>
<th>Spool symbol</th>
<th>Flow rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C100N</td>
<td>2C</td>
<td>100 L/min (26 USgpm)</td>
</tr>
<tr>
<td>33C80N</td>
<td>33C</td>
<td>80 L/min (21 USgpm)</td>
</tr>
<tr>
<td>5C85N</td>
<td>5C</td>
<td>85 L/min (22 USgpm)</td>
</tr>
</tbody>
</table>

For KBHDG5V-7 valves:

<table>
<thead>
<tr>
<th>Spool code</th>
<th>Spool symbol</th>
<th>Flow rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C200N</td>
<td>2C</td>
<td>200 L/min (52 USgpm)</td>
</tr>
<tr>
<td>33C160N</td>
<td>33C</td>
<td>160 L/min (42 USgpm)</td>
</tr>
<tr>
<td>5C200N</td>
<td>5C</td>
<td>200 L/min (52 USgpm)</td>
</tr>
</tbody>
</table>

For KBHDG5V-8 valves:

<table>
<thead>
<tr>
<th>Spool code</th>
<th>Spool symbol</th>
<th>Flow rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C375N</td>
<td>2C</td>
<td>375 L/min (99 USgpm)</td>
</tr>
<tr>
<td>33C375N</td>
<td>33C</td>
<td>375 L/min (99 USgpm)</td>
</tr>
<tr>
<td>5C375N</td>
<td>5C</td>
<td>375 L/min (99 USgpm)</td>
</tr>
</tbody>
</table>

Asymmetric Spools

Figure preceding metering type designator, “N” e.g. 2C**N) is flow rating P–A, or A–T (“A” port flow); Figure after “N” (N***) is flow rating P–B, or B–T (“B” port flow).

<table>
<thead>
<tr>
<th>Spool code</th>
<th>Spool symbol</th>
<th>Flow rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C70N45</td>
<td>2C</td>
<td>70 L/min (18.5 USgpm) “A” port flow</td>
</tr>
<tr>
<td>33C60N40</td>
<td>33C</td>
<td>60 L/min (17.2 USgpm) “A” port flow</td>
</tr>
</tbody>
</table>

For KBHDG5V-7 valves:

<table>
<thead>
<tr>
<th>Spool code</th>
<th>Spool symbol</th>
<th>Flow rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C150N85</td>
<td>2C</td>
<td>150 L/min (40 USgpm) “A” port flow</td>
</tr>
<tr>
<td>33C130N65</td>
<td>33C</td>
<td>130 L/min (33.3 USgpm) “A” port flow</td>
</tr>
</tbody>
</table>

For KBHDG5V-8 valves:

<table>
<thead>
<tr>
<th>Spool code</th>
<th>Spool symbol</th>
<th>Flow rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C375N250</td>
<td>2C</td>
<td>375 L/min (99 USgpm) “A” port flow</td>
</tr>
<tr>
<td>33C375N250</td>
<td>33C</td>
<td>375 L/min (99 USgpm) “A” port flow</td>
</tr>
<tr>
<td>12C375N250</td>
<td>12C</td>
<td>375 L/min (99 USgpm) “A” port flow</td>
</tr>
<tr>
<td>133C375N250</td>
<td>133C</td>
<td>375 L/min (99 USgpm) “A” port flow</td>
</tr>
<tr>
<td>72C375N250</td>
<td>72C</td>
<td>375 L/min (99 USgpm) “A” port flow</td>
</tr>
<tr>
<td>733C375N250</td>
<td>733C</td>
<td>375 L/min (99 USgpm) “A” port flow</td>
</tr>
</tbody>
</table>

Application Notes

A. Main-Spool Options

Spools shown are meter-in/meter-out types. Center-condition options are types 2, 33, 5, 12, 133, 72 and 733.

B. Internally Piloted Models

Differ from detailed symbols above by omission of plug A and the blocking of port X by the mating surface.

C. Internally Pilot Drain Models

Differ from detailed symbols above by omission of plug B and blocking of port Y by the mating surface.
Operating Data

Data is typical with fluid at 36 cSt (168 SUS) and 50 C (122 F).

Power supply	24V DC (21V to 36V including 10% peak-to-peak max. ripple) max current 3A
Command signal	0 to +10V DC, or 0 to −10V DC, or −10 V to +10 V DC
Common mode voltage to pin B	47 kΩ
Valve enable signal for model codes PH7 & PR7	>8.5V (36V max)
Command signal (+)–non-inverting input	
Command signal (–)–inverting input	
Input impedance	47 kΩ
Common mode voltage to pin B	18V (max)
Input impedance	
Power supply 24V DC (21V to 36V including 10% peak-to-peak max. ripple)	
max current 3A	
Command signal	0 to +10V DC, or 0 to −10V DC, or −10 V to +10 V DC
Common mode voltage to pin B	47 kΩ
Valve enable signal for model codes PH7 & PR7	>8.5V (36V max)
Command signal (+)–non-inverting input	
Command signal (–)–inverting input	
Input impedance	47 kΩ
Common mode voltage to pin B	18V (max)
Input impedance	

7-pin plug connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power supply positive</td>
</tr>
<tr>
<td>B</td>
<td>Power 0V</td>
</tr>
<tr>
<td>C</td>
<td>Monitor 0V (PE7 & PC7)</td>
</tr>
<tr>
<td>D</td>
<td>Valve enable (PH7 & PR7)</td>
</tr>
<tr>
<td>E</td>
<td>Command signal (+)–non-inverting input</td>
</tr>
<tr>
<td>F</td>
<td>Command signal (–)–inverting input</td>
</tr>
<tr>
<td>G</td>
<td>Monitor output</td>
</tr>
<tr>
<td></td>
<td>Protective ground</td>
</tr>
</tbody>
</table>

View of pins of fixed half

Electromagnetic compatibility (EMC):
- Emission (10 V/m) EN 50081-2
- Immunity (10 V/m) EN 50082-2

Threshold command voltage (minimum voltage for minimum flow):
- 0V – 5C Spools
- 0.25V– 2C & 33C Spools

Monitor signal (pin F) ±10V DC for full spool stroke

Output impedance 10 kΩ

Power stage PWM frequency 10 kHz nominal

Step input response, with flow through P–A–B–T, Δp=5 bar (72 psi) per metering path, e.g. P–A

Required flow step:
- KBHDG5V–5 0 to 100% 100% to 0 +90 to −90%
- KBHDG5V–7 0 to 100% 100% to 0 +90 to −90%
- KBHDG5V–8 0 to 90% 90% to 0 +90 to −90%

Time to reach 90% of required step:
- KBHDG5V–5 24 ms 23 ms 35 ms
- KBHDG5V–7 24 ms 23 ms 36 ms
- KBHDG5V–8 31 ms 31 ms 49 ms

Reproducibility, valve-to-valve (at factory settings): ≤5%

Flow at 100% command signal <1%

Hysteresis with flow through P-A-B-T, Δp=5 bar (72 psi) per metering path (P–A or B–T) <1%

Protection:
- Electrical Reverse polarity protected
- Environmental IEC 144, Class IP67

Ambient air temperature range for full performance 0° C to 70° C (32° F to 158° F)

Oil temperature range for full performance 0° C to 70° C (32° F to 158° F)

Minimum temperature at which valves will work at reduced performance –20° C (–4° F)

Storage temperature range –25° C to +85° C (–13° F to +185° F)

Relative duty factor Continuous rating (ED = 100%)

Mass:
- Valves with pressure reducer
 - KBHDG5V–5 10,15 kg (22.4 lb) approx.
 - KBHDG5V–7 11,4 kg (25.1 lb) approx.
 - KBHDG5V–8 17,05 kg (37.54 lb) approx.
- Valves without pressure reducer
 - KBHDG5V–5 8,85 kg (19.5 lb) approx.
 - KBHDG5V–7 10,1 kg (22.2 lb) approx.
 - KBHDG5V–8 15,85 kg (34.84 lb) approx.

Supporting products:
- Auxiliary electronic modules (DIN -rail mounting):
 - EHA-CON-201-A2* signal converter See catalog GB 2410B
 - EHD-DSG-201-A-1* command signal generator See catalog GB 2470
 - EHA-RMP-201-A-2* Ramp generator See catalog GB 2410A
 - EHA-PSU-201-A-10 Power supply See catalog GB 2410A
 - EHA-PID-201-A-20 PID controller See catalog GB 2427
MAXIMUM PRESSURES, BAR (PSI) VALVES WITH PRESSURE REDUCER

<table>
<thead>
<tr>
<th>Model</th>
<th>Pilot pressure source</th>
<th>Pilot drain connection</th>
<th>P Port</th>
<th>A&B Ports</th>
<th>T Port</th>
<th>X Port</th>
<th>Y Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBHDG5V–5</td>
<td>External</td>
<td>External</td>
<td>315 (4500)</td>
<td>315 (4500)</td>
<td>210 (3000)</td>
<td>210 (3000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td></td>
<td>Internal*</td>
<td>Internal</td>
<td>315 (4500)</td>
<td>315 (4500)</td>
<td>50 (700)</td>
<td>315 (4500)</td>
<td>50 (700)</td>
</tr>
<tr>
<td>KBHDG5V–7</td>
<td>External</td>
<td>External</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td></td>
<td>Internal*</td>
<td>Internal</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td>KBHDG5V–8</td>
<td>External</td>
<td>External</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td></td>
<td>Internal*</td>
<td>Internal</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
</tr>
</tbody>
</table>

† Minimum recommended pilot operating pressure = 50 bar (700 psi)
* Internal drain is a non-preferred option
◆ For pilot pressures ≤ 210 bar (3000 psi) a pilot pressure reducer is optional
For pilot pressures > 210 bar (3000 psi) a pilot pressure reducer must be used
Unused pilot port: Maximum pressure as shown

MAXIMUM PRESSURES, BAR (PSI) VALVES WITHOUT PRESSURE REDUCER

<table>
<thead>
<tr>
<th>Model</th>
<th>Pilot pressure source</th>
<th>Pilot drain connection</th>
<th>P Port</th>
<th>A&B Ports</th>
<th>T Port</th>
<th>X Port</th>
<th>Y Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBHDG5V–5</td>
<td>External</td>
<td>External</td>
<td>315 (4500)</td>
<td>315 (4500)</td>
<td>210 (3000)</td>
<td>210 (3000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td></td>
<td>Internal</td>
<td>Internal</td>
<td>210 (3000)</td>
<td>315 (4500)</td>
<td>50 (700)</td>
<td>210 (3000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td>KBHDG5V–7/8</td>
<td>External</td>
<td>External</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
</tr>
<tr>
<td></td>
<td>Internal</td>
<td>Internal</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>350 (5000)</td>
<td>50 (700)</td>
</tr>
</tbody>
</table>

† Minimum recommended pilot operating pressure = 50 bar (700 psi)
* Internal drain is a non-preferred option
◆ For pilot pressures ≤ 210 bar (3000 psi) a pilot pressure reducer is optional
For pilot pressures > 210 bar (3000 psi) a pilot pressure reducer must be used
Unused pilot port: Maximum pressure as shown

MINIMUM RECOMMENDED FLOW RATES

<table>
<thead>
<tr>
<th>Valve Size/Spool Code</th>
<th>Min. Flow Rate L/min</th>
<th>In³/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBHDG5V–5–2C100N</td>
<td>0,5</td>
<td>30</td>
</tr>
<tr>
<td>KBHDG5V–5–33C80N</td>
<td>0,5</td>
<td>30</td>
</tr>
<tr>
<td>KBHDG5V–7–2C200N</td>
<td>1,0</td>
<td>60</td>
</tr>
<tr>
<td>KBHDG5V–7–33C160N</td>
<td>1,0</td>
<td>60</td>
</tr>
<tr>
<td>KBHDG5V–8–2C375</td>
<td>1,5</td>
<td>91</td>
</tr>
<tr>
<td>KBHDG5V–8–33C375</td>
<td>1,5</td>
<td>91</td>
</tr>
</tbody>
</table>

For spool types 2C and 33C
\[\Delta p = 10 \text{ bar (142 psi)} \text{ for looped flow } P-A-B-T \text{ (or } P-B-A-T) \]
FLOW GAIN

At $\Delta p = 5$ bar (72 psi) per metering path (e.g. P-A), with flow through P-A-B-T or P-B-A-T. Percentage command signals applicable for positive and negative values of command signal.

At other Δp values, flow rates approximate to: $Q_x = Q_d \sqrt{\frac{\Delta p}{\Delta p_d}}$

where $Q_d =$ Datum flow rate
$\Delta p_d =$ Pressure drop at datum flow rate
$\Delta p =$ Required Δp

Limited by valve power capacity. Refer to curves on page 8.

FLOW GAIN

"2C" Spools

"5C" Spools

"33C" Spools

Performance Curves

KBHDG5V-5/7/8
Performance Curves

Flow Gain

KBHDG5V-5

KBHDG5V-7
Performance Curves

KBHDG5V-8

![Performance Curves Diagram](Image)
KBHDG5V-5/7

KBHDG5V-5

<table>
<thead>
<tr>
<th>Valve without pressure reducer</th>
<th>Valve with pressure reducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBHDG5V-5</td>
<td></td>
</tr>
<tr>
<td>mm (Inch)</td>
<td></td>
</tr>
<tr>
<td>70.0</td>
<td>264.6</td>
</tr>
<tr>
<td>(2.76)</td>
<td>(10.42)</td>
</tr>
<tr>
<td>35.0</td>
<td>113.95</td>
</tr>
<tr>
<td>(1.38)</td>
<td>(4.49)</td>
</tr>
<tr>
<td>70.0</td>
<td>202.83</td>
</tr>
<tr>
<td>(2.76)</td>
<td>(7.99)</td>
</tr>
<tr>
<td>3rd angle projection</td>
<td>Air Bleed Screw</td>
</tr>
</tbody>
</table>

Mounting surface, seals supplied. For mating surface dimensions, see page 12 (size 05 with additional X and Y ports). For mounting subplate options and bolt options, see catalog GB-2425.

KBHDG5V-7

<table>
<thead>
<tr>
<th>Valve without pressure reducer</th>
<th>Valve with pressure reducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBHDG5V-7</td>
<td></td>
</tr>
<tr>
<td>mm (Inch)</td>
<td></td>
</tr>
<tr>
<td>92.0</td>
<td>277.47</td>
</tr>
<tr>
<td>(3.62)</td>
<td>(10.92)</td>
</tr>
<tr>
<td>46.0</td>
<td>120.17</td>
</tr>
<tr>
<td>(1.81)</td>
<td>(4.73)</td>
</tr>
<tr>
<td>210.83</td>
<td>142.3</td>
</tr>
<tr>
<td>(8.30)</td>
<td>(5.60)</td>
</tr>
<tr>
<td>250.68</td>
<td>250.68</td>
</tr>
<tr>
<td>(9.87)</td>
<td>(9.87)</td>
</tr>
<tr>
<td>Air Bleed Screw</td>
<td>Air Bleed Screw</td>
</tr>
</tbody>
</table>

Mounting surface, seals supplied. For mating surface dimensions, see page 13. For mounting subplate options and bolt options, see catalog GB-2425.
Installation Dimensions

KBHDG5V-8

KBHDG5V-8

mm (Inch)

Valve without pressure reducer

Valve with pressure reducer

Mounting surface, seals supplied. For mating surface dimensions, see page 13. For mounting subplate options and bolt options, see catalog GB-2425.
Mounting Surfaces

General Description
When a subplate is not used, a machined pad must be provided for valve mounting. Pad must be flat within 0,0127 mm (.0005 inch) and smooth within 1.6 mm (63 microinch). Mounting bolts, when provided by customer, should be ISO 898 class 12.9 or better. Bolt Kits See page 16.

Dimensional Tolerances
Dimensional tolerance on interface drawings is 0,2 mm (0.008") except where otherwise stated. ISO 4401 specifies inch conversion to 0.01”.

Conversion from Metric
ISO 4401 gives dimensions in mm. Inch conversions are accurate to 0.01” unless otherwise stated.

Mounting Bolt Tappings
ISO 4401 gives metric thread tappings. Alternate UNC tappings are Vickers recommendations that allow these plates and associated valves to be used up to their maximum pressures, when using Vickers recommended bolt kits, or bolts of an equivalent strength. It is recommended that Customer’s own manifold blocks for UNC bolts should be tapped to the minimum depths given in the footnotes.

Mounting Surface Interface ISO 4401-05
Vickers Standard Size 05 Interface
This interface conforms to ISO 4401-054-0-94, NSI/B93.7M (and NFPA) size 05, CETOP R35H4 2-05, DIN 24340 Form A10.

Interface with additional pilot ports X and Y
This interface conforms to Vickers standard, plus holes X and Y ISO 4401-054-0-94.
Mounting Surfaces

Vickers Standard Size 07 Interface
This interface conforms to:
ISO 4401-07-06-0-94
ANSI/B93.7M (and NFPA)
size 07 CETOP R35H4.3-07
DIN 24340 Form A16

Mounting Surfaces

Vickers Standard Size 08 Interface
This interface conforms to:
ISO 4401-08-07-0-94
ANSI/B93.7M (and NFPA)
size 08 CETOP R35H4.3-08
DIN 24340 Form A25

Vickers uses port L for pressure-centered and other options not in high demand.

1/2 -13 UNC optional.

1/4 -20 UNC optional.
Wiring

Connections must be made via the 7-pin plug mounted on the amplifier. See page NO TAG of this leaflet and Installation and Start-up Guidelines, MLB-9090A for cable recommendations.

<table>
<thead>
<tr>
<th>7-pin plug</th>
<th>Flow direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin D</td>
<td>Pin E</td>
</tr>
<tr>
<td>Positive</td>
<td>OV</td>
</tr>
<tr>
<td>Negative</td>
<td>P to A</td>
</tr>
<tr>
<td>(U_D - U_E) = Positive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7-pin plug</th>
<th>Flow direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin D</td>
<td>Pin E</td>
</tr>
<tr>
<td>Negative</td>
<td>OV</td>
</tr>
<tr>
<td>Positive</td>
<td>P to B</td>
</tr>
<tr>
<td>(U_D - U_E) = Negative</td>
<td></td>
</tr>
</tbody>
</table>

COMMAND SIGNALS AND OUTPUTS

- **7-pin plug**
 - **Pin D**: Pin E
 - **Positive**: OV, \(U_D - U_E \) = Positive
 - **Negative**: OV, \(U_D - U_E \) = Negative

WARNING

All power must be switched off before connecting or disconnecting any plugs.

▲ Note: In valves with PH7 or PR7 type electrical connection, pin C is used for a valve enable signal.
Wiring Connections

- Spool position monitor voltage (pin F) will be referenced to the KB valve local ground. A “local ground” (pin C) is provided on PC7/PE7 versions for optional use by differential input customer supplied electronics.

WARNING
Do not ground pin C. If the local ground (pin C) is not used for differential monitor electronics, do not use. Read monitor pin F with respect to ground.

Wiring Connections for Valves with Enable Feature

▲Note:
In applications where the valve must conform to European RFI/EMC regulations, the outer screen (shield) must be connected to the outer shell of the 7 pin connector, and the valve body must be fastened to the earth ground. Proper earth grounding practices must be observed in this case, as any differences in command source and valve ground potentials will result in a screen (shield) ground loop.

WARNING
Electromagnetic Compatibility (EMC)
It is necessary to ensure that the valve is wired up as above. For effective protection the user electrical cabinet, the valve subplate or manifold and the cable screens should be connected to efficient ground points.

The metal 7 pin connector part no. 934939 should be used for the integral amplifier. In all cases both valve and cable should be kept as far away as possible from any sources of electromagnetic radiation such as cables carrying heavy current, relays and certain kinds of portable radio transmitters, etc.

Difficult environments could mean that extra screening may be necessary to avoid the interference. It is important to connect the 0V lines as shown above. The multicore cable should have at least two screens to separate the demand signal and monitor output from the power lines. The enable line to pin C should be outside the screen which contains the demand signal cables.
Application Data

Fluid Cleanliness
Proper fluid condition is essential for long and satisfactory life of hydraulic components and systems. Hydraulic fluid must have the correct balance of cleanliness, materials and additives for protection against wear of components, elevated viscosity and inclusion of air.

Recommendations on contamination control methods and the selection of products to control fluid condition are included in Vickers publication 9132 or 561, “Vickers Guide to Systemic Contamination Control.” The book also includes information on the Vickers concept of “ProActive Maintenance.” The following recommendations are based on ISO cleanliness levels at 2 µm, 5 µm and 15 µm.

For products in this catalog the recommended levels are:
- 0 to 70 bar (1000 psi) - 18/16/13
- 70 + bar (1000 + psi) - 17/15/12

Experience has shown, however, that life of any hydraulic components is shortened in fluids with higher cleanliness codes than those listed above. These codes have been proven to provide a long trouble-free service life for the products shown, regardless of the manufacturer.

Hydraulic Fluids
Materials and seals used in these valves are compatible with antiwear hydraulic oils, and non-alkyl-based phosphate esters. The extreme operating viscosity range is 500 to 13 cSt (2270 to 70 SUS) but the recommended running range is 54 to 13 cSt (245 to 70 SUS). For further technical information about fluids see “Technical Information” leaflet B-920 or I-286S.

Installation
The proportional valves in this catalog can be mounted in any attitude, but it may be necessary in certain demanding applications, to ensure that the solenoids are kept full of hydraulic fluid. Good installation practice dictates that the tank port and any drain port are piped so as to keep the valves full of fluid once the system start-up has been completed.

Mounting Bolt Kits
For KBHDG5V-5
- BKDG01633M (metric)
- BKDG01633 (inch)
For KBHDG5V-7
- BKDG7 858918 (metric)
- BKS90724 (inch)
For KBHDG5V-8
- BKDG8-655M (metric)
- BKDG06-635 (inch)

If not using Vickers recommended bolt kits, bolts used should be to ISO 898, 12.9 or better.

Seal Kits
- KBHDG5V-502-350518
- KBHDG5V-702-350519
- KBHDG5V-802-350686

Plugs
- KBHDG5V
 - 7-pin plug (metal).......934939
 - 7-pin plug (plastic).....694534
 (metal plug must be used for full EMC protection)

Field repair is restricted to the replacement of the seals.

Note:
- An alternative metal connector which gives EMC protection but not IP67 rating is available from ITT-Cannon, part number CA06-COM-E-14S-A7-5.
- The feedback/solenoid assembly installed in this valve should not be disassembled.

Extension Cable
Extension Cable: Adapter for extending 7 core cable when changing from KA to KB valve and existing wiring is not long enough. Consists of a 7 pin plug, a 7 pin socket and a length of cable, fully assembled for ease of use.

Service Information
The products from this range are preset at the factory for optimum performance; disassembling critical items would destroy these settings. It is therefore recommended that should any mechanical or electronic repair be necessary they should be returned to the nearest Vickers repair center. The products will be refurbished as necessary and retested to specification before return.
